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""<4A technique for determining the aerodynamic parameters

"of a maneuvering reentry vehicle (MaRY) from post-flight

analys~s of radar tracking data was developed. The techni-

que uses a sequential weighted least squares estimator which

steps through the data processing batches of data sequen-

tially. The observations consisted of angle and range measure-

ments from a precision tracking radar located in the vicinity

of the impact area. A six dimension estimator consisting of

three position and three velocity components was designed

for estimating the state of the RV during free flight. Two

reentry estimators were developed. One, a seven dimension

estimator consisting of the six elements of the free-flight

estimator plus the ballistic coefficient, was designed to

estimate the state during ballistic reentry. The second is

the nine element MaRV estimator used once a maneuver is be-

gun. An algorithm based on measurement residual monitoring

was dev',loped to switch adaptively from the six-state esti-

mator to the seven-state estimator and then to the nine-state

estimator. A series of numerical simulations was performed

to validate the technique and its programming. Monte Carlo

simulations were used to verify the accuracy of the estima-

tor covariance matrix.

S ix

......................... -------



POST-FLIGHT TRAJECTORY RECONSTRUCTION OF A

MANEUVERING REENTRY VEHICLE FROM

RADAR MEASUREMENTS

I Introduction

Objective and Scope

The objective of this thesis was to develop a technique

for the efficient and accurate post-mission analysis of radar

tracking data collected on the reentry vehicle (RV) of a

ballistic missile. The RV was assumed to have the capability

of maneuvering in the atmosphere by controlling the direction

and magnitude of its lift vector. This ignores the case of a

maneuverable reentry vehicle (MaRV) which might be designed

[.'. -,.-" to maneuver by thrusting; and therefore, could conceivably

maneuver even above the atmosphere. In general, the technique

which was developed and which is described in this report

would not be applicable to such an RV. It was further assumed

that a single radar was ideally located in the vicinity of the

impact area and that the radar tracked the RV from near hori-

zon break (-00 elevation) to very near impact. The accura-

cies of the radar tracking data, which consists of time-tagged

range, azimuth, and elevation measurements, were assumed to

be consistent with those of a state-of-the-art, precision,

"phased-array tracking radar. The data rates were also con-

* sidered to be within the capability of such a radar. All of

the data which were used for this investigation were

S- -i". A- . - - - -



simulated. Table I lists the pertinent information relative

to the simulated data where the noise on the data was simu-

lated as zero-mean white Gaussian noise.

Table I-i

Description of Simulated Data Used in Numerical Examples

Data Rates:

Range 1 point per second above

Azimuth 120 km and 10 points per

Elevation second below 120 km

Data 1-0 Errors

Range 5 m

Azimuth 0.0160

Elevation 0.0200

"A further assumption is that all parameters other than

those being estimated are perfectly known. This is equivalent

to saying that there are no "Q-parameters", where Q-parameters

are defined by Day (Ref II) and others as those parameters

affecting the observations but which, for some reason or

another, are not or cannot be estimated. These include,

among others, station location, biases, and a most important

one for the technique developed, atmospheric density. This

is not a limitation on the technique itself but on the inter-

pretation of the covariance matrices which result.

2



The Research Approach

The problem of real-time tracking of a reentry vehicle

based on its radar measurements has received considerable at-

tention in the literature over the past 2-3 decades. It has

been described by various authors (25) and (10) as a highly

complex problem in nonlinear filtering. Since 1960, following

the important work of Kalman and Bucy (Ref 20), the extended

Kalman filter (EKF) has found wide application for both the

ballistic reentry vehicle (BRV) tracking problem (22), (14)

and later the maneuvering reentry vehicle tracking problem

(10). This is owing to the real time nature of the problem

where measurements need to be processed as they become avail-

able so as to "point" the radar for the next measurement.

Here the primary emphasis is on maintaining track on the target.

SThe post-flight analysis problem is very similar to the

tracking problem, but it differs in two important aspects.

The similarity is that the true equations of motion governing

the flight of the RV being tracked are the same in both cases.

The differences involve 1), the time constraint and 2), the

emphasis. In the post-flight analysis, there is virtually no

time constraint and the emphasis is on accuracy. That is to

say that we are interested in determining the RV state varia-

bles at some epoch time (or possibly a series of epoch times)

with as much accuracy as the data will permit. It should,

after all, be the data which limit the accuracy of our esti-

mates and not our model. In the tracking problem, out of

necessity imposed by the time constraint, many simplifying

Defined as the time at which state variables are estimated.

3



assumptions about the dynamics model are made, o.g., a flat,

nonrotating earth may be assumed. In the post-mission
analysis problem, even a rotating, spherical earth is not of

sufficient accuracy. Because of this emphasis on accuracy,

much attention to detail is given in the later sections of

I this report which deal with modeling the flight of the MaRV.

It should be pointed out that the term state of the RV as used

above implies the RV state vector which consists of position,

velocity, and zero, one, or three aerodynamic parameters do-

pending respectively on whether the RV is in free flight,

ballistic flight, or maneuvering flight. Quite often, in

I missile analysis, the aerodynamic parameters are the ones we

are most interested in estimating in post-mission trajectory

*: reconstruction.

S. Another advantage we have in the post-flight analysis

problem over the real-time tracking problem is that we have

all the data at hand to treat simultaneously, if we desires

I or one point at a time, if we desire. This gives us great

flexibility in designing the estimator for the post-flight

analysis problem. It also forces us to make a choice. Chang

et al., (Ref 8) have applied a fixed interval smoother, which

consists of combining the outputs of a forward pass of an ex-

tended Kalman filter with a backward pass of the extended

Kalman filter, to solve the problem. Gauss invented the

method of weighted least squares (WIS) in 1795 to solve an

astrodynamical problem by treating all of the available obser-

vations simultaneously. The technique, which was developed

4



for this research is a very flexible algorithm which is based

:on the method of WLS, The user, by specifying the batch size

(i.e., the number of observations to process in a given batch),

can operate the program in either a batch WLS mode where

all data are treated simultaneoualyl or as an EKF treating

each data point (range, azimuth, and elevation at a single

time) separatelyp or any place in between as a sequential iL8

estimator.

Novel Features

The algorithm which was developed and programmed for

this thesis research is presented in detail in the remaining

chapters of this report. it has two novel features. One is

the way in which the trajectory partials, which are required

in the weighted-least-squares-differential-correction process,
are calculated. The other is a technique for adaptively

switching from the six-element state vector used tro free-

flight estimation to the seven-element state vector used for

ballistic-reentry-flight and then from the seven-elwi•nt state

vector to the nine-elenent MaRY state vector.

The standard technique for calculating trajectory par-

tials in both satellite and missile trajectory reconstruction

is to integrate numerically a net of second order , ordinary

differential equations called variational equations. See for

"example Refs (1)# (27) and (34). The variational equations
have as their dependent variables the partial derivatives of

the total acceleration with respect to the parameters to be

,. ., estimated. There are at least (free-flight) 10 of these second

74 o



order (corresponding to 36 first order) differential equations

to be integrated. They are typically passed to the same in-

tegration routine which integrates the equations of motion.

This represents a significant computational burden on a tech-

nique, whether batch or sequential, which is at best slovw

however, because the WLS differential correction technique is

inherently iterative, the accuracies of the partials need not

be as great as those of the state variable themselves. The

validity of this claim is demonstrated i; Chapter IV of this

report where it is shown that the batch least squares estima-

tor converges in two or three iterations with good initial,

estimates of the state variables.

As an example, a spherical harmonic series of zonal

harmonics, representing the potential of an oblote spheroid,

is used for accurately modeling the missile's acceleration due

to gravityl whereas, the predominate term of this series, that

due to a spherical earth, is quite adequate for partials cal-

culations. As a result of this less demanding requirement on

the partiold accuracies, a very simple Taylor's series expan-

sion is used to equate the state, &iti at some time ti+1 with

the state, &i at some earlier time ti (i.e., numerically in-

tegrate li). This is then used in calculating the state tran-

sition matrix, J(ti+1, ti) which is central to the trajectory

partialsocalculation, as well as to propagating the state

covariance matrix in time. The approximations mentioned above,

as well as others used in the partials calculations, are given

in complete detail in Appendix B along with all the partlals

6
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used in the development of the state transition matrix. It

should be emphasized that these approximations are only used

in partials calculations.

The other unique feature of the technique which was

developed is a method for adaptively sensing when a higher

order estimator is required and then 6witching to the higher

order estimator. As was mentioned earlier, it was assumed

that the data collection began as the RV broke the radar's

horizon meaning that several mini:-jz free-flight data were
collected. Free-flight is that phas(. of the trajectory after

booster burnout and prior to reentry when the RV is acceler-

ated only by the force of the earth's gravity. During this

phase of flight, the RV state vector is given as

-T

where X, Y, and Z are coordinates of the RV's position vector

and X, Y, and Z are coordinates of the RV's velocity in some

I • arbitrarily chosen cartesian coordinate system. In this con-

text, the state vector is a vector of those parameters we

wish to estimate at some given time called the epoch time

such that given the state vector at epoch and the equation of

motion for each state variable, we can predict the state at

any other time within the interval during which the equations

are valid. After reentering the earth's atmosphere, the RV

begins to experience an additional force, that due to atmos-

pheric drag. During this ballistic-reentry-phase* the RV's

*Even a MaRV initially reenter along a ballistic tra-
jectory. The MaRV state vector is given in later sections
of this report.

7
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state vector is given as

",•" X (X,Y,Z.XY,z,O)T

where 8 is a parameter associated with the drag called the

ballistic coefficient. During free-flight, the ballistic

coefficient is completely unobservable (meaning it can not be

estimated from the data). The transition from free-flight to

reentry, where 0 is observable, is a gradual one with no

clear cut demarcation; therefore, if one is using a sequential

estimator to step through the data, there must be a way to

determine when this transition from free-flight to ballistic-

reentry-flight has occurred. In chapter III of this report,

a method based on monitoring the root-mean-square (RMS) error

of the data residuals is presented for this purpose.

Report Organization

The remaining sections of this report describe in detail

the necessary calculations for the post-flight analysis of*

radar tracking data collected on a maneuvering reentry vehi-

cle. Chapter II presents the equations necessary for accu-

rately modeling the flight of a MaRV. These include the equa-

tions of motion, various transformations need, and models of

the earth's atmosphere and the RV's drag. In Chapter III,

the algorithm for estimating the trajectory and aerodynamic

parameters from the noise corrupted radar measurements is

developed. This starts with the basic weighted least squares

(WLS) estimator for nonlinear equations and shows how this is

related to the minimum variance (MV) and maximum likelihood

8



(ML) estimators. A sequential estimator with and without

a priori covariance on the initial conditions is presented.

A technique for adaptively switching from the free-flight

estimator to the BRV estimator, to the MaRV estimator is

given, and a method for determining close initial estimates

is suggested. Chapter IV discusses the numerical simulations

that went into developing and testing the computer program

which was developed. Two numerical examples are presented

in detail which demonstrate the operation of the program

using simulated data. Chapter V presents a brief summary

and suggests some areas where further study is required. Two

appendices are also included. Appendix'A describes the

oblate spheroid which is used as the model of the geometric

shape of the earth. Appendix B defines the state transition

matrix and presents the equations used in deriving the par-

tial derivatives of the state transition matrix, and then

lists all the partials thus derived.

9
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II Trajectory Generation Equations and Methods

This chapter presents the equations necessary for ac-

curately modeling the flight of a ballistic missile's MaRV.

These include the differential eqaations of motion and a

numerical integration scheme for propagating the MaRV's state

vector in time. Also included are the equations for trans-

forming the position of the MaRV in the computational co-

ordinate system, the one in which the equations of motion are

expressed and integrated, to radar range, azimuth, and eleva-

tion for a given radar station. This transformation will be

necessary for the least squares-differential correction

algorithm presented in Chapter III which compares the observed

radar measurements to the calculated radar measurements based

on an assumed or estimated state vector for the MaRV. Also

included in this chapter are models of the eartlis atmosphere

and the drag model for a class of sphere-cone shaped RV's.

Coordinate Systems and Transformations

Several different coordinate systems are useful for

expressing the trajectory and radar related equations. The

most important ones are described in this section. The com-

putational coordinate system, the one in which the equations

of motion are expressed and integrated, is the earth-centered-

inertial (ECI) cartesian coordinate system depicted in Figure II-

F., 1. The origin of this coordinate system is at the center of

10
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the ellipsoidal earth model*j the X-Y plane is the equatorial

plane of the earth; and the Z-axis is coincident with the

earth's axis of rotation. This coordinate system is fixed in

inertial space with the X-axis passing through the Greenwich

meridian at some arbitrarily chosen initialization time, t1 .

_ For this analysis, tI is taken as the time of the first radar

observation.

Figure II-i also shows the radar-RV geometry. The

radar location is typically expressed in geographic coordi-

nates-geodetic latitude (y), longitude (X), and height (h)

above the earth's surface. These coordinates are also con-

venient for displaying and plotting the RV's position as a

function of time. Figure 11-2 identifies the geographic co-

ordinates of the radar station.

Two other coordinate systems which are useful in de-

scribing the trajectory estimation problem are two radar co-

ordinate systems which are shown in Figure 11-3. One is a

left-handed cartesian coordinate system (x,y,z) called the
north-east-up (NEU) system and the other is a spherical co-

ordinate system (R,A*,E). The origin of these two coordinate

systems is the radar. The z-axis is along the local geodetic

vertical and azimuth an elevation are measured as shown in
N..

the figure.

The final coordinate system to be described in this

section is the earth-centered-rotating (ECR) system. It

*See Appendix A for a description of the reference el-
lipsoid used to model the earth.

12
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differs from the ECI coordinate system only in that the XR-

axis always points out the Greenwich meridian. The ECI and

ECR coordinate are related by the following transformation at

any given time ti.

SX -,•t) (&fS/(At .-) 0 X

ZRU 0 Z

where
At t -tI

0 is the earth's rotation rate and

XR' YR' ZR are coordinates in the ECR reference frame

The geographic coordinates (*, X, h) are related to

the ECR coordinates by the following equations.

YX (P. 1A) cosqf51w (1-3

(11-4)

iy
X; + z (11-5)

(11-6)

"15
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and

4' ~f (1I-8)
i S

~ /(ce os~Y (-9)

where

Sis the geocentric latitude

(e is the local radius of the earth

a is the semi-major axis of the ellipsoidal earth model
b is the semi-minor axis of the ellipsoidal earth model,

and

e is the eccentricity of the ellipsoidal earth model.

Equations (11-8) and (11-9) are derived in Appendix A. Appen-

dix'A, which describes in detail the reference ellipsoid used

to model the shape of the earth, also gives the numerical

values of the constants a, b, and e.

The final transformation which will be necessary to

transform the ECI coordinates of the RV to radar observation

coordinates (R, Az, and E) is the following

S45 $

where , Xs, and hs are the geographic coordinates of the

radar station (Fig 11-2 ) and X., Y. and Z are the

16
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coordinates of the radar station in the ECR reference frame

"given by

y (h -o oes x ty 9,v),s(11-12)

Z$ (h,(11-13)

where r is the radius of the earth at the radar station and

ISis the geocentric latitude of the radar station. and

P*{ram

rs are determined frm * using (11-8) and (11-9).

Then

(11-14)

'' Z-

S(11-16)

Free-Flight Equations of Motion

For a reentry vehicle, unpowered and still above the

earth's atmosphere, the only significant force acting on it

is that due to the earth's gravity. The acceleration due to

gravity is typically derived from the ravity potential.

Wolaver (Ref 38) shows that the earth's gravity potential,

U is a solution to Laplaces equation

17
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ST, .-. "- (11-17)

The most general solution to Eq (11-17) for a unit mass ex-

terior to the earth is given as an infinite spherical harmonic

I series which is a function of r, the distance from the earth's

center; e, the geocentric latitude; and X, the longitude

.IV

I • F- (ýsNq -zt _ (I(-18)

A*Z.F'

where,

p is the earth's mass times the universal gravity con-

stant

a is the mean equitorial radius

Pn(sinq), P N (sin? are the Legendre polynomials and

M M
SN' JN , XN are constants determined from satellite data.

I Typically, some truncated form of Eq (11-18) is used for sat-

, ellite and missile trajectory simulation and analysis depending

on the accuracy which is required. A particularly convenient

form is one which assumes the dependence on longitude to be

negligible. This truncated expression (Ref 5)

*i is called the zonal potential. The first four terms of the

zonal potential were used in this investigation to model the

18
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I]
earth's gravity. Values of the constants used and the first

three Legendre polynomials are given below

S--(11-20)

i(SIwq) 0, S55f J/iV -S (4p1

((•s,#4'J - o. Nq'O5,,$- o)] (11-22)

a g ~ ~ 71(11-23)

I"/og,,6/6 x/o" (11-24)

*6-Z6.5 PXOO (11-26)

'-/66 X/0"' (11-26)

3986O028 41,w ('a27

The zonal potential is considered sufficiently accurate for

the application being considered here and the advantage is

that by setting

it can be written completely in terms of the computational

coordinate system. This eliminates the need to transform from

a non-inertial system to the inertial system at each integra-

tion step as would be required if the time dependent terms

19



were retained. The disadvantage of using this potential func-

tion is that the J22 term is neglected. The magnitude of the

2 

2
J22 term, which represents the Earth'd equatorial ellipticity,

has the same order as the J zonal harmonic and perturbs

motion as much as any zonal harmonic except J 2 " Thus for

other applications, the potential represented by Eq (11-19)

may not give sufficient accuracy.

The acceleration due to gravity is given as the negative

of the gradient -f the potential function.

-vTJ (11-29)

In the ESC reference frame, the components of the accelera-

tion due to gravity become

*tot

4.4

(11-31)

go€ /f 70 - (I1-32)

The RV state vector during free flight then contains the six

elements of position and velocity

( 1 , ,z, 1, (11-33)

20



where the state at any time is determined by numerically in-

tegrating Eqs (II-30), (11-31), and (11-32) from some initial

states

MRV Equations of Motion

Once the RV reenters the earth's atmosphere, somewhere

below 120.km altitude, it begins to experience an additional

force due to aerodynamic drag. Even a MaRV reenters along a

ballistic trajectory, so that for a portion of its flight the

-. equations of motion of a MaRV are the same as those of a BRV.

The aerodynamic drag force acts opposite to the air relative

velocity vector and is calculated as the product of three

quantitiess

(i) the dynamic pressure, q

4, • (ii) the nondimensional drag force coefficient, CD and

(iii) a reference area, A

The dynamic pressure, q depends on the air density, p and

the relative velocity between the RV and surrounding air,
*

V in the following mannera
*4

, V (11-34)

Choosing A an the cross sectional area of the RV and defining

the ballistic coefficient, 0 as

(11-35)

1! this analysis, winds are assumed to be negligible,
-% so that air relative velocity is velocity relative to the

rotating earth.

21
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where

m is the mass of the RV,

the acceleration due to the drag force is given by the vector

equation

Se (11-36)

where

v is the unit vector in the direction of Vv -a
In the ECI reference frame, the components of the drag ac-

celeration are determined to be

X~/ X4, (11-37)

'd V4 Y(11-38)

4 l!ý- (11-39)

where Xa Ya' and Z are the components of the air relativea a a

velocity in the ECI reference frame given by

S4 ny (11-40)

-nx (11-41)

V4 P aY, - )- (11-42)

where X, Y, and Z are the components of the inertial velocity
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in the ECI coordinate system and X, Y, and 0 are as previously

defined.

The total acceleration of the BRV is the sum of the

gravity acceleration and the drag acceleration. So the

equations of motion of the BRV in ECI coordinates are given as

* v-V

I (11-43)

(11-45)

where Xg, Yg, and Z are given by Eqs (11-30), (11-31), and

(11-32).

Although BRV flight is somewhat idealized in that there

is almost always some lift due to non-zero angle of attack or

asymmetric ablation, the net effect is usually assumed to be

negligible in the motion model of high performance ballistic

RV's. The state vector for the reentry of a ballistic RV is

(X Y Z (11-46)

If the unintentional lift mentioned above becomes significant,

then the ballistic RV model must be modified and will be the

same as that of a MaRV.

MaRV Equations of Motion

When the reentry vehicle undertakes a maneuver, a

third force, aerodynamic lift is introduced. The lift force

23
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is in a plane perpendicular to the air relative velocity.

One method which allows the lift acceleration to be formulated

in a manner similar to the drag acceleration is to decompose

the lift force into two orthogonal components. One component

Ais chosen to be in a direction whose unit vector, eT is given

as (see Fig 11-4)

eT (11-47)

The other component is chosen to be in a direction whose unit

Avector, e is given asc

CA (11-48)

These two components of the lift force are called turn, FT and

climb, Fc. Figure 11-4 shows the geometry of the lift compo-

nents in relationship to V and the drag force, FD. With-a
these definitions, turn acceleration and climb acceleration

are given as

ArA (11-49)

• = (11-50)

where
CT is the non-dimensional turn force coefficient, and

C is the non-dimensional climb force coefficient

To simplify the notation, two new terms are introduced, CT,
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the turn parameter, and Ccwthe climb parameter) defined below

,.....,w F'_= •A(1I-51)

C€- (11-52)

The ECI components of the turn and climb accelerations may

then be written as

S"-7- (11-53)

r 7-" (11-54)

Zr (11-55)

(/ CcfI••: (X.&-•Yz k )..- ±(zi,.(X z] -(117 I-56)

_ - (11-58)

where

Now all the equations necessary for representing the

equations of motion of the MaRV completely in the computa-

tional-ECI reference frame have been given. In some cases
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the accelerations have been expressed in terms of air rela-

"- tive coordinates because of the convenience of notations

hovever, in those cases, expressions relating the air rela-

tive coordinates to inertial coordinates have been given.

Symbolically then, the equations of motion for a MaRV in the

ECI reference frame are given as

S= # XD÷ Xr ÷X (11-60)

4 oY- (IT-61)

Z _Zo#Zr Z (11-62)

"" ** 4*
where X, Y, and Z are given by Eqs (11-30), (11-31), and

9 0 a • s 6

(11-32)1 XD, YD' and Z are given by Eqs (11-37), (TI-38), and

(II-39)1 XT, YT' and ZT are given by Eqs (11-53), (11-54), and
.I- 5).n a. '".

(1-55); and X c' YC, and Zc are given by Eqs (11-56), (11-57),

! and (11-58).

1JmMRri9Sa Intecration of Egugtions of Motion

The equations of motion given by Eqs (II-60), (11-61)

and (11-62) represent a system of coupled, second 'order, non-

linear ordinary differential equations which cannot be solved

in closed form. They must be numerically integrated from
. a

some initial conditions on X, Y, Z, X9 Y, and Z to give the

position and velocity at any other time. A numerical inte-

gration scheme which is used extensively in ballistic missile

trajectory simulation and estimation is a fourth-order

27
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Runge-Kutta method modified by Nystroih to handle the second

" -"order equation. Kreyszig (Ref 21) calls this the Runge-

Kutta-Nystr6m method. Its popularity for propagating the

state of a ballistic missile is due to the fact that it is

self starting; it has small round off error for small stc,

size; the step size may be varied at will from step to step;

and it is straightforward to implement. The following de-

scription follows essentially that of (Ref 33).

Let the equations of motion given in the previous sec-

tion be represented by the functional relationship

(11-63)

where

Y Y (11-64)
K.z

Furthermore, let r(t) denote the solution of Eq (11-63)

corresponding to the initial conditions r(t) 0 o and

(t = r Let r. and r' denote approximations to i:(t.)
0 30 -3 _jJ

and r(t.) and set h = tj+-tj.o To obtain the approximations

rj+1 and rj+1 we calculate as follows

h1 '28
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j A (11-66)

"(11-67)

After the above are computed, the new values rj+l and rj+1
are then obtained as

1 s// 6 /" K) +7 (11-69)

A1 K- (11-70)

. Thus, starting with r and Eo as known quantities the inte-
-0 -

gration subroutine which consists basically of Eqs (11-65)

through (11-70), repeats itself cyclically until as many
steps, h as may be desired have been completed.

Draq Models

As Athans (Ref 3) states, the ballistic coefficient is

an important pa.ameter for several reasons. This parameter

physically represents the ratio between the mass of the RV

and the effective drag area along the velocity vector. Thus,

knowledge of this coefficient reveals some telltale charac-

teristics about the missile. In addition, an accurate 8-

estimate generally imposes a more stringent requirement than

29



do other criteria on the estimator performance and, therefore,

offers to us a convenient method of evaluating estimator ac-

S 1. curacy or comparing estimator results.

The ballistic coefficient given in Eq (11-35)

S/A(11-35)

is not a constant because the drag coefficient, CD varies

with Mach number for an RV of given geometric shape. For

sphere-cone RV's, CD is parameterized as functions of the

vehicle half-cone angle, bluntness-ratio (radius of nose/

radius of base); and Mach number. A series of unpublished

tables from wind tunnel test of sphere-cone RV's is stored

inteihal to the program and the user supplies an estimate of

the half cone angle and bluntness ratio. Figure 11-5 shows

the theoretical drag curve reproduced from Ref (35) for a 60

half-cone-angle, 0.21-bluntness-ratio, sphere-cone RV.

N Since tables don't lend themselves readily to analytic

differentiation, an analytic expression for drag is needed

for the partials necessary in the differential correction

process. The drag model used for this purpose is (Ref 34)

C0 t.,4iL 4-- (11-71)

where M is Mach Number and k1 , k 2 and k13 are related to the

.: RV half-cone angle and bluntness ratio and are determined

from least squares fits of the drag tables to Eq (11-71).
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FIG I1-S
DRAG COEFFICIENT US MACH NO. FOR A SPHERE-CONE RV WITH A
HALF CONE ANGLE OF 6 DEG AND A BLUNTNESS RATIO OF e.21
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Although Eq (11-71) doesn't represent all Mach Numbers shown

in Fig 11-5, it represents quite adequately the region in

which v'e are interested, down to abciut Mach 3.

Models of the Atmosprhore

Models of the atmospheric density and temperature are

requireýd for accurate trajectory simulation and estimation.

The density is re'qui red for calculating the dynamic pressure,

and temperature is required for Mach niumber calculation.

C (HI-34)

4f (Hi-73)

The importance of accurate density information for accurate

- calculation is seen by the fact that a percent error in

density transforms directi; into a percent error in 0 owing

to the linear relationship between 0 and1/

C J_ Z(11-74)

Thus, the program provides for the input of the local density

and temperature tables as functions of altitude. In addition,

for simulation purposes, tables from the 1962 U.S. Standard

Atmosphere, are stored internal to the program. Again,

For ICBM ranges, a high performance RV (0>7000kg/m )
impacts about Mach 3.
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* however, tables don't lend themselves to analytic differentia-

tion. Thus, an analytic expression for density is required.

SThe density model vhich is used for the partials needed in

the differential correction process is (Ref 7)

,,o-v<4eA (11-75)

where

o (1.226kg/m 3 ) the stmovpheric donsity at h * 0

e a the constant 2.7182818

s.h. w the scale height (A 7000m)
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I ZIII The 1stimator 2au10on1

In the previous chapter, equations were givan for prop-

agating the state of a MaRV forward* in time. Theme were ex-

pressed in terms of the differential equations of motion

along with an algorithm for numerically integrating the

equations of motion. Additional equations were given for

transforming the position of the RV at any time, ti from SCI

_ coordinates, (XjD Y1, Z1 ) to spherical radar coordinate.,

In this chapter, equations for estimating the state of

a MdRV at some epoch time# top based on the observed radar

amesurements and the equations given in the previous chapter#

are given. These estimator equations are based on the clas-
1 aical method of weighted eloat-sqUlrem, which is generally

agreed to have been invented first by Osums for his astronom-

• ' Loal studies in 1795. He wee 1e years old at the time,

There are two othersp lagendre in •rance in 1006 and Adrain

of A.meri-a in 1409 who independently developed the method.

Since these early times# there has been a vast literature on

various aspects of the mlast-squares method just as Gouts pro-

dicLed there Vould be, For detaills of the very interesting

'The equations givbn wilI allow for the propagation to
be forward or backward in time with equal easel howoverp all.
propagations of the state in this report vill be forward In
time.
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history of estimation theory, the reader is referred to the

excellent survey papers listed in Refs (19) and (30) in the

bibliography.

The basic weighted-least-squares differential correc-

tion procedure is developed first. Then the relationship be-

tveen WLS estimation and minimum variance and maximum likeli-

hood estimation is discussed. The estimator with and without

apriori statistics is described. Sequential estimation and

an algorithm for deciding when to switch to a higher order

estimator are discussed. A method for obtaining initial con-
ditions is also suggested.

Weichted Least -Sgues Differential Correction

The method of least squares is concerned with estima-

ting the values of a set of parameters of the measurement

model, which relates the measurements to the parameters, by

minimizing the sum of the squares of the residuals. The

residuals are defined to be the differences between the ob-

served measurements and the corresponding measurements com-

puted from the mathematical model using some set of estimates

of the parameters. The set of estimates which renders the

sum of squared residuals a minimum is said tu be optimal in

the least-squares sense. To put this in terms of the problem

at hand, the observed measurements are the ranges, azimuths,

and elevations from the tracking data and the corresponding

computed measurements are determined from the equations in

Chapter II. That is to say that the equations of Chapter II
,* .constitute our moasurement model. The parameters we want to
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estimate are the RV state variables at some fixed time, to

called the epoch time. If we let the vector zi represent

the set of observed measurements of range, azimuth, and

elevation at any given time, ti, (ti > to) the measurement

model may be represented notationally as

where

n = the total number of measurement times

X o = the true (but unknown) RV state vector at epoch

hi = the vector of nonlinear functions relating X to zi

E. = the vector of errors in the observed measurements

at ti

In component form, the measurement model is given as

S= •• ÷4.4 (111-2)

Az., Az 9 4 4 (111-3)

: (111-4)

where E E Ai and E are the measurement errors in range,

azimuth, and elevation respectively at ti and the o sub-

script on Roil AZoil and Eoi is to identify them as the ob-

served values at ti.
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The most general state vector for a MaRV contains nine

" elements-three positions elements, three velocity elements,

and three aerodynamic parameters. Thus, the state vector at

epoch may be given as

his would represent the MaRV during maneuvering provided CT

and Cc are not zero. Ballistic-flight is modeled by setting

CT and Cc to zero and free-flight is modeled by setting :./0'

CT9 and Cc to zero.

The set of equations given by Eqs'(III-2) - (111-4)

are the observation equations. If they were linear, we could

ta]e any I of them and solve for the unknowrns, where I is

the number of unknown state variables (i.e., I = 6, 7, or 9).

(Here we have assumed that I Ž 3 n ). The problem is the non-

linearity of the observation equations. There is no direct

method for simultaneously solving a set of nonlinear equa-

tions; therefore, an iterative approach must be taken. The

iterative approach when applied to the least-squares observa-

tion equations is typically called differential correction.

It consists of "linearizing" Eq (III-i) by expanding it in a

Taylor's series about some initial guess or estimate of X

truncating it by ignoring all terms of order two or higher;

and sclving for the resulting differentials which minimize
k.

.4i' the sum of the squared residuals determzied from using the

initial estimate. This optimal set oz a Iferentials is then
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added to the initial estimate to form. a better estimate, and

"the process is repeated until some convergence criterion is

met (e.g., all of the differentials become essr.tially zero).
-5

This is explained in more detail in what foilo*:e where the

weighted-least-squares estimate is derived.
A

Let X be an estimate of X o, then the Taylor's series

expansion of Eqs (111-2) - (111-4) are given as

_''S
64i% -zoi Ax 9)S 117

[. • •o'i(111-8)

where the vector of differentials, AX for the free-flight

case is given as

A

Y.-z.

AX= (111-9)

The partials of range, azimuth, and elevation with respect to

the state vector X given in Eqs (111-6) - (IIm-8) are-3
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A

evaluated using the current estimate, X-0 and are defined by

the following matrix equation

.~1-aAz 2A1-0

The set of equations given by Eqs (111-6) - (111-8) when the

higher order terms are neglected is a set of linear equations

. in the unknowns &_X. It is to this set of equations that we

apply the principle of least-squares. First we make the

notationally simplifying definitions

)A.

(111-12)

-Jm X6

t.39
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A. -(A,,-is)

• .. -- A,,•

$MA

With the above definitions, the linearized observation equa-

tions can be rewritten as

Some of the residuals of Eq (111-14) are in terms of range

units and some are in terms of angle units; and even though

the range measurements are more accurate than the angle mean-
urements, the numerical values of the range residuals (in

meters) will most certainly be larger than the angle residuals

(in degrees). This forces us to apply weights to the observa-

tions to normalixe the residuals so that all are given equal

consideration. Or we might want to apply weights even if all

the observations were of one type (say range) to give more

accurate observations greater influence and less accurate

observations less influence. Assuming we may want to aesign

'- a distinct weight to each observation we define

Wai a weight applied to the ith range observation
Rih

WAI " weight applied to the ih azimuth observation
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WEi *weight applied to the ith .elevation observation

-and

AWV = the 3n-by-3n diagonal weighting matrix whose

'4-1* diagonal elements are WRi, WAi, WE , = 1,2,. n.

With the above definitions, the weighted observation equa-12
tions are given by premultiplying Eq (111-14) by W½.

"w,, v1H.. (111-15)

where the subscript W on is to indicate that this is the

weighted error function.

Applying the principle of least squares to Eq (111-15) we

obtain the sum of the squared residuals to be.

ew, 8V W AW W CX)(111-16)

Taking the partials of the above scalar function with respect

to 4X gives

______ ~(111-17)
.2

W' 1

"Setting Eq (1ii-17) to zero, transposing and solving for AX

results in the standard weighted-least-squares estimate

A•X = (HWH)'HW-18)
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where

W- WVV'-~ W' (111-19)

Had the Eq (111-2) - (1II-4) been linear, the optimal least-

squares estimate of X-0 would be given by adding the AX de-
- A

termined from Eq (111-18) to the initial estimate, XO.

As it is, however, since the observation equations are not

linear, the optimal estimate must be determined in stages by

adding the differential, 6X determined from Eq (111-18) at
A

each stage to the current estimate, 0 and iterating the above

equation until the process converges to'the optimal weighted-

least-squares estimate.

In algorithm form the weighted-least-squares-differential-

correction method may be summarized by the following steps:
A

1. Somehow determine initial estimates, X for all of

the unknown parameters (e.g. see page 54).
A A

2. Using the estimate, 2jo, propogate X in time
A

(integrate o) to the time of each observation and

evaluate V and H.

3. Determine AX from Eq (111-18).
A

4. Add AX to X to form a better estimate

A A
x x + AX

5. Return to Step 2, and repeat Setps 2-4 checking for

convergence after Step 4 of each iteration.

As given on page 38.
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6. At convergence the optimal least-squares estimate
A

is XO. (Note: no notation distinction is made be-

tween the converged estimate and the initial est-
A

Smate , X
In step 4 theodenotes replacement or writing over.

The above procedure converges quite rapidly (< 4 itera-

tions) for good initial estimates. With poor initial esti-

mates, the above procedure may not converge at all. In fact,

it will most likely diverge. A technique for determining

good initial estimates is given later in this chapter.

Minimum Variance and Maximum Likelihood Estimation

The weighted-least-squares estimator developed in the

previous section was done so from purely "reasonableness"

arguments. No knowledge of the underlying probability dis-

tributions of the observation errors (ER, EAs EE) was re-

quired and none was used. Weights were assigned in a some-

what arbitrary Tranner where it seems reasonable that more

accurate measurements should receive nore weight than less

accurate measurements. As a result nothing can be said about

the accuracy of the WLS estimate. Clearly from Eq (111-18),

the least squares estimate is a function of W. Therefore, it

appears that there may be an "optimal" W to use in the least-

squares estimator. Junkins (Ref 18) shows that if the opti-
A

mality criterion is to determine the estimate X1 with mini-

mum covariance matrix, then W should be the inverse of the

covariance matrix of the observation errors. When the

weighting matrix is so defiaed, the least-squares estimator,
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in the linear case, is called the minimum variance (MV)

estimator. Defining Q as the covariance of the observation
-q• A

errors and P V. Lhe covariance of Xio, the first order approx-

imation to a MV estimator for our nonlinear problem is

given as

• = /•'H)-••'•(111-20)

p (111-21)

A
where X.o is determined exactly as in Steps 1-6 of the previous

section with W now replaced by-Q and P is determined using

the converged o, Since P of Eq (III-7) is only a first-

order approximation of the covariance matrix, it may, for

very nonlinear problems, be a poor estimate of the errors in
A
X. Therefore, Monte Carlo simulations are usually required

to validate the covarianco matrix. This is discussed more

fully in Chapter TV.

Since the diagonal elements of the covariance matrix,

P are the mean squared errors of the individual state vari-

ables, the MV estimator given by Eqs (111-20) and (111-21) is

sometimes referred to as the minimum mean square (MMSE) esti-

mator. See Liebelt (Ref 23). It is also (Ref 32) called

the Markov estimator.

Another assumption, which is almost always made in

actual application, is that the observation errors are

Gaussian distributed with zero mean. Using this assumption,
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Wiesel (Ref 36) develops the maximum likelihood (ML) esti-

mator which is identical to Eqs (111-20) and (111-21) where

Q is now the covariance of the normal distribution of the

.. observation errors. For ML estimation, see also (Ref 16,18,24).

Another assumption which was made in developing the

estimator for this application is that the observational

errors are not correlate3 in time nor spatially. This is

not strictly true spatially since the radar doesn't make

its measurements in range, azimuth, and elevation but in-

stead transforms "raw" measurements into range, azimuth, and

elevation. In addition, if the measurements are from a

moving sensor which has been transformed to a fixed location,

then the errors are correlated in time. The effect of this

approximation is to makeQ a diagonal matrix with the error

S.variances on the diagonal. Considerable storage and calcula-

tions can be saved if the error variances are identical

from time to time, i.e.,

c~ (111-22)
LTA• (7Aj (111-23)

(7; (111-24)

• 2 02 2
for any two times, ti and t. where Ri' Ai' and 0Ei are the

variances in range, azimuth and elevation at ti. This being

the case, the 3n-by-3n covariance matrix, Q can be represented
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by three scalars, a•R aA and a.. The a.R cA' and aE used

* .. in the numerical examples to validate the estimator equations

and the programming are given in Table I-i of Chapter I.

A Priori Statistics

It was mentioned earlier that good initial estimates

of the unknown state parameters are required for the differ-

ential correction process to converge. If in addition,

statistics for the initial estimates are also known the esti-

mator is modified to reflect these a priori statist" zs (Ref 2)

as

p0 P -p. HT H)/ (111-26)

A
where P0 is the covariance of the initial estimate, X-0.

The Sequential Estimator

The weighted-least-squares estimator developed in the

preceding sections assumed a deterministic system model

where the system model is given as

X .IID)X)Z ) ile)7JC)LJC (111-27)

Another way of saying this is, if the unknown state variables

were known, we could propagate the state forward in time

perfectly. That would imply the models for gravit., drag,
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and lift given in Chapter I1 are exact. Whereas no model

is ever perfect, some are very nearly so such that determin-

istic least squares works exceptionally veil. A case in

point is the missile in free-flight where tho only force

acting is gravity. Gravity can be modeled with sufficient

accuracy, and is in this algorithm, that all of 'the free-

flight data can be processed simultaneously in a single batch

using the six-state estimator given previously. On the other

hand, the drag model for an RV is not so vell known, and the

lift model is even less well known. This motivates us to

seek an estimator for the reentry flight regime to process

the data sequentially, a small batch at a time, The size of

the batch, specified by the number of time points, shoulid, as

a general rule, be the largest -over whiecoh the model may be

S• considered perfect (sufficiently accurate). This number

a varies with altitude, ac.',iracy of the observation data, etoo

and no attempt was made in this research to determine the

optimur batch size. Instead the user of the program is al-

lowed to specify the batch size anywhere from one point to

all the data, Examples will b, given in Chapter IV.

The sequential estimator which vaa developed for this

- problem is based on )~qN (rII-25) and (111-26) and on addi-

tional equation for propagating the covariance in time (Ref 15).

I,. (11 -2
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The sequential estimator which was implemented is similar to

- that suggested by Barker (Ref 4) and is outlined in the fol-

loving stopas 
A

I. The number of points In batch one (NPI81) is

specified# and the initial estimates, 3.1 and Pol

are dotermined, (The subscript, 1 roeors to the

batch number).

2. The KA differential correction algorithm (steps

2-5) given previously is iterated until convergence

is achieved using Zq (111-25) instead of((;I-16),
'a

lose#

IA a -1 r. 1r(111-29)

3. After step 2 has qonvorged, update the covariance

using Zq (111-26)

J ,5,~~w4)t (111-30)

4. Propagate the optimal ta.ima__e, dete.mined for
A

batch onop and thn, covoriarnc P1 to the time of
the next epochs (Oenerally speaking the epoch is

advanced one time interval but this is selected by

the user by specifying the number of points

"P. *Program input

4.

|' ,

I n.



between epochs one and two, NPBE12)

•+ (111-31)

_ T

/ *&(C 1 ,,J *' ~(,t)(111-32)
*u I tI,-O tIo

(The number of points in batch two and succeeding
*

batches is specified separately as NPBA1 so that

batch one may incorporate all of the free flight

data if desired)

5. Again the WLS differential correctiofi algorithm is

iterated until the optimal estimate of X.o2 is con-

verged upon.

6. After stop 5 has converged, the covariance of X-.2

is updated by

,Ito's H 4 (111-33)
I

A
7. Propagate the optimal state estimate, # 2 and co-

variance F2 to the time of the next epoch where

the time of the next epoch is specifiedby the

number of points between epochs, NPBE*. (NPBE and

NPB212 are specified separately again so that batch

one may be treated separately).

Program input, NPBE12 < NPOI and NPBE < NPBA1

49
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8. Repeat steps 5 and 6 for batch 3.

9. This propogate-update cycle is repeated for sub-

sequent batches until the final data point is in-

eluded in a batch.

10. Once the final point is included in a batch, the

batch size is gradually collapsed to a single data

point.

Thus, the sequential, weighted-least-squares estimator is

controlled by four inputs NPB1, NPBE12, NPBA1 and NPBE

where

NPB1 = number of points in batch one

.I NPB12 = number of time intervals between epochs one

"and two

NPBAl = number of points in all batches after one

NPBE = number of time intervals between succeeding

batches

When NPB1 is set to 3n or greater, all of the data are pro-

cessed simul,.aneously in a single batch. When NPB1 and NPBAI

are both set to one and the differential correction algorithm

is not iterated (MAXIT = 0), the equations make up one form

of the Kalman filter (see Ref 24).

Finite Memory Estimator

Experience gained in developing the estimator, indicates

that for data simulated as indicateU in Table I if the batch

sizes are 50 points or greater, then no a priori statistics

are needed (i.e., = 0, all i). On the other hand, when
01
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the batch size is sufficiently small that the normal matrix,

(HQ•-H) is ill-conditioned or singular, a priori statistics

are required. In this small batch sige applications, it

has been found that with the infinite memory estimator given

above which includes Eq (111-26), that the covariance matrix

p. (,t'fHT  H)Y (111-33)

becomes indefinite as the batch number, i becomes larger. To

prevent this from happening, a technique described by others

was implemented to deweight the a priori covariance. This

results in modifying Eq 111-33 as

Lw (C "'H/'/"/"9'! (111-34)

where C is a diagonal matrix (Barker used a scalar) whose

diagonal elements Cii are between zero and one. Many simula-

tions were run to determine a C to keep Pi positive definite.

No conclusions can be drawn but it seems that the larger the

batch size, the smaller C must be. Small batch sizes re-

quired Cii > .8. One way to avoid this problem would be to

use large batch size (NPBA1 > 50) and set Cii = 0 and this

appears to work fine for ballistic flight; however, if the

MaRV undergoes some high-g maneuvers, small batch sizes would

be necessary as the coefficients of turn, CT and climb, Cc

are modeled as constant over the batch time interval. The

case of high-g maneuvering was not investigated in this study.

This deweighting accomplished in various ways. See
(Ref 4,16,14). 51



Adaptively Increasincl the Estimator Order

As has been mentioned previously, during free-flight,

the estimator is a six-state estimator corresponding to the

six elements of the free-flight state vector, (X,Y,Z,X,Y,Z)

In the sequential mode, as the estimator is stepping through

the data, there is a point after which the free-flight esti-

mator is no longer adequate. This is a result of the slow-

down of the RV due to drag making the free-flight equations

no longer adequate for modeling the RV's motion. At this

time, we want to switch to the seven-state BRV estimator de-

fined by the BRV state vector (X,Y,Z,X,Y,Z,6). However,

this point is not well defined a priori. If we switch to

the seven-state estimator too soon (i.e., before the ballis-

tic coefficient becomes observable), then the normal matrix,

( , (HT Q H) will be singular, and therefore not invertible.

This condition will lead to the estimator failing. The

penalty for switching late is not so great. It will just

mean that for a period of time, the RV motion is modeled in-

accurately. This inaccurate modeling of the RV motion will

lead to larger than expected residuals. This divergence of

the residuals is what is used to determine when to switch to

the higher order estimator. This is accomplished by keeping

track of what is called the total root mean square, (RMST)

error of the range residuals

Originally azimuth and elevation RMS's were also used
but too many false switches occurred. See Example 2 Chapter IV.
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where

R oi-Rci = the i range residual

N = the total number of range observations which

have been processed at any given time

For N greater than 30, the RMST should be very nearly equal

to the standard deviation of the normal distribution of the

range errors, which for the simulated data is five meters.

A long free-flight track is useful in determining a good

value of the RMST.

The RMST is used to detect divergence by comparing it

to the range RMS for any batch. Call the range RMS calcu-

lated from a single given batch the BRMS. In the limit,

BRMS K-RMSTK should be less than 2RSTDK with a probability of

about .95, so if

A6eAI5K - R~MS K > , 9572Tý (zII-36)

then divergence has occurred and the switch is made, where

RSTD is a measure of the dispersion of the BRMS's defined as

(,&, .(111-37)

where K is the number of batches processed thus far. The

check is not made until K is greater than four to allow time

for "settling" of RSTD. The value four is arbitrary.
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Once the switch from the eix-state estimator to the

seven-state estimator has been made, the last batch is re-

processed with the higher order estimator, arid then the same

logic is used to detect the onset of maneuvering. If a man-

euver is detected, the program swit.ches to the nine-state

estimator given by the Ma.V litate vector, (X,YZ,X,Y,Z,pCTCc)T

Initial Conditione

Good initial conditions for the state variables are

required for the differential correction process to converge.

The stato variables•, P, CT, and Cc are not so critical and a

rough guess is sufficient, e.g., 0 a 70P0 kg/m2n CT a 0 and

Cc * 0. On the other hand, the position and velocity.

initial conditions are very critical and there is no way to

guess them, Thus a routine was written to determine initial

estimates as follows

1. The range, azimuth, and elevation measurements are

transformed into 3CI X, Y, and Z.

2. The ECI coordinates are fit in a least-squares sense

to a special 4 th order polynomial in time (given

here only the X coordinate)

where a30 14 and a5 are first determined from

•#l 2aa 6•,e•¢,)÷/• (¢/t,, i6t,",,,, (111-39)
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where Xgi is determined from the gravity subroutine

using the raw X,Y,Z coordinates.

3. Once the a's have been determined, the fourth order

polynomial is diffeientiated to determine velocity.

If all the data are free-flight, the above procedure

works exceptionally 'well resulting in convergence of the dif-

ferential correction algorithm in one or two iterations. It

also works very well with data which includes reentry pro-

vided a substantial portion is free flight. If all the data

are reentry, better initial conditions are provided by ig-

noring the second-order polynomial constraint on a 3 , a 4 and

a5 given in step 2 i.e., Eq (111-39).

This technique for determining initial position and
velocity was developed by the author originally for program
TEAP, a program used at FTD for fitting free-flight data.

V;

S.

'5
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IV Numerical Examples

Many numerical simulations were run to validate the

estimator equations and the programming of them. The pro-

gram was designed in stages with each stage being checked for

accuracy before proceeding to the next stage. The first

stage consisted of the free-flight equations of motion with

the batch WLS estimator equations. Numerical partials were

generated to check the accuracy of the analytic partials

used in the estimator equations. Subsequent stages included

the BRV equations of motion, the sequential estimator equa-

tions, and finally the MaRV equations of motion with the re-

quired partials. Numerical partials were simulated for each

stage to test the accuracy of the analytic partials. These

tests verified the fact that the simplified equations of

motions used for the partials calculations were of suffi-

cient accuracy.

Once the program was completed, many more simulations

were run, and refinements and modifications were made where

necessary. The results of several of these have been al-

luded to in previous chapters. It was found, for instance,

that the a priori covariance matrix had to be deweighted to

maintain positive variances as output of the estimator equa-

tions. Simulations showed that the deweighting had to be

increased as the batch size increased. Because of the time

involved in tuning the estimator equations for various batch
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sizes, no conclusion can be reached as to how best to use

r .the a priori covariance information. It was determined,

however, that for batch sizes of 10 or more points no
*~ T-1a priori covariance was necessary to keep H T H positive

definite. As a result, the numerical simulations discussed

in the remainder of this chapter were run with no a priori

covariance.

Two numerical examples are presented in detail in the

remainder of this chapter. The first discusses the opera-

tion of the estimator in the batch WLS mode where all data

are fit simultaneo-isly. The second example discusses the

results of running the estimator in the sequential mode. A

ten run Monte Carli simulation was performed for each of the

two examoles.

Example One - The Batch Estimator

The purpose of this example was twofold, (1) to verify

the accuracy of the models used in the program and (2) to

look at the accuracy that could be attained when using the

estimator in the batch WLS mode where all the data are fit

simultaneously. This mode represents the ultimate in the

accuracy which can be attained from radar data of a given

accuracy and is applicable to the RV in free-flight and to

the RV for ballistic reentry. In order to accomplish the

first goal, the data used in this example were simulated

using the Foreign Technology Division's MRVRAP program - a

program which has been tested and proven t. be accurat e for

57
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G • .0

simulating the flight of a ballistic RV. Ten sets of simu-

'eq lated radar tracking data were generated. Each set of data

was corrupted by random noise from normal distributions having

zero means and standard deviations of 5 m, 0.015 deg, and

0.020 deg for range, azimuth, and elevation, respectively.

The errors in the data were determined from a random number
0

generator by specifying the "SEED". The SEED was specified

to be different for each data set, so that, even though the

errcrs for each set were from the same three normal distribu-

tions, the samples weri- different for each.

Data for this first exampe were simulated for a

ballistic RV having a hypersonic ballistic coefficient of

3300 kg/sq m. The ballistic coefficient was modeled to vary

with Mach number as discussed in Chapter II. Figure IV-1 is

a plot of normalized ballistic coefficient, drag acceleration,

air relative velocity and altitude plotted versus time from

120 km to impact to show how these parameters are related to

one another through out reentry. Epoch was defined to be at

re~entry (120 km altitude) and only the data from reentry to

impact were considered. Figure IV-2 is a plot of one sample

of the tracking data used. The parameters have been normal-

ized so as to be able to display them on a single graph.

Ten points per second were simulated for a total of 500 data

points.

All of the data in each set were fit simultaneously

solving for the nine elements of the MaRV state vector. The

initial conditions for the position and velocity states were

The SEED is just a starting value for the random
number generator. 58
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determined automatically by the program as described in

Chapter 1111 00 was initialized at 500 kg/sq m and both CT

and C€ were initialized at 0.0,

Since the data for this example were generated from

known conditions, the performance of the estimator can be

judged by how well. the estimated parameters match the true

state parameters, Table IV-1 is a list of the results from

the ten simulations. In the upper left block of Table WV-
A

are given the true errors in the state estimates for
the ten runs. The last rown of Table IV-1 give the means

and standard deviations for the ton run sample; The lasL

three rows of the tablo, give the standard deviations of the

range residuals, o£. All runs converged in three iterations.

Table ZV-2 contains the standard deviation-correlation coef-

.,4 . ficiont matrix from one of the singlG sample runc. Since

this matrix is symmstric, only th. lower triangular form is

given. This matrix is determined from the estimator co-

variance matrix, (0TAQ1H)*. The diagonal elements are the

standard deviations, Comparing the standard deviaticrnu from

Table IV-2 with the last column of Tub),* IV-1 shows a very

good agroment.

Another indication as to how well the model agrees

with the data in given by plotting the reoldusls. Yigure

IV-3 is a plot of the range, azimuth, and elevation residuals

from on;e of the single snmple runs. The absoose of trend in

the raciduals indicates thnt: the data have boun mudelad

correctly and accurately,

o,
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Example Two - The Sequential Estimator

__ •This example was designed to show how the sequential

mode of the estimator operated as the number of points per

'-batch was varied. Three specific things were of interest:

(1) how the estimator switching algorithm operated as

the number of points per batch was varied,

.8 (2) how the accuracy in the estimated parameters

varied with the number of points per batch, and

(3) how well the estimator covariance tracked the true

errors in the estimated parameters.

For this example another ten sets of noisy data were gener-

ated. All ten samples were identical except for the random

noise added to the data which was varied as was explained in

Example One. The data were simulated this time starting at

about 150 seconds prior to reentry and going to impact for a

total of 206.5 seconds. The data were simulated as 1 pps

prior to reentry and 10 pps thereafter. This amounted to a

total of 698 time points, and as in the previous example,

the errors in the data were simulated as zero mean, white

Gaussian noises with standard deviations of 5 m, 0.015 deg,

and 0.020 deg respectively for range, azimuth, and elevation.
v'~ One of the data sets has been plotted in Figure IV-4 for re-

ference. The data were simulated with a hypersonic ballistic

coefficient of 10,000 kg/sq m and 0 varying with Mach number.

f*" A moderate maneuver was begun at approximately 10 seconds

prior to impact (" 25 km altitude) by setting CT to 0.000001

and Cc to 0.00001 sq m/kg at this timp. These values were
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No.

A. selected to extend the flight time by about five seconds.

It was found that a value of Cc much larger than the one

used, applied at this altitude, resulted in the RV skipping

out. The plus sign on C imaplies a left turn and on CT

implies a climb up. The pertinent reentry parameters of

this model are plotted in Figure IV-5.

Three separate cases were run. In each case all of the

free flight data (first 151 seconds) were included in batch

one. Then the epoch was propagated forward 150 seconds to

the time of reentry. Thereafter each batch consisted of

50 points for case one, 30 points for case two'and 10 points

for case three with the epoch being advanced 2 points be-

tween batches. Initial estimates of position and velocity

at the first epoch were determined automatically by the pro-

A_ gram and ballistic coefficient, CT, and Cc were initialized
, C.

at 5000 kg/sq m, 0.0, and 0.0 sq m/kg respectively. The pro-

pagated state estimates were used as initial estimates for

subsequent batches. For each case, the estimator was ini-

tialized as the six state free-flight estimator consisting

only of the position and velocity states with the program

switching to the BRV and MaRV estimators when divergence of

the range residuals was detected. This shows up vividly

in Figure IV-6 where for case one, the total RMS (RMST) of

the range residuals and the RMS of the range residuals for

each individual batch (BRMS) are plotted as a function of

time. The time on this figure is in seconds after the first

data point. Recall that the estimator switches from six

67
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states to seven states when the magnitude of the BRMS be-

A. comes significantly larger, in a statistical sense, than

the RMST. This occurs at approximately 182 seconds in

Figure IV-6 when the difference, BRMS-RMST, becomes larger

than twice the standard deviation of the error in RMST. A

check is also made on the value of the dynamic pressure at

this time to prevent the filter from switching while aero-

dynamic parameters would still be unobservable. This pre-

vented the filter in this case from switching at 3 earlier

times when the BRMS went above the RMST + 2a curve. The

estimator switches again at approximately 190 seconds when

the maneuver is detected, this time switching to the nine-

state MaRV estimator. The RMST goes straight line after
[!['•this switch because it is no longer updated once the switchhas been made to the MaRV estimator. No provision was made

K. to switch from a higher to lower order estimator, but then

it's not considered necessary since once the switch is made

CT and Cc will be observable thereafter even though they may

be zero. Also plotted on Figure IV-6 is the mean of the

range residuals for each batch. Ideally this should be zero

for each batch. The same curves for the azimuth and eleva-

tion residuals are plotted as Figure IV-7 and IV-8 and as

can be seen for this case neither azimuth nor elevation de-

tected the divergence. This varied however with data sets.

In some the maneuver showed up dramatically in the elevation

residuals (see for example Figure IV-9). In every case-one

run however, the divergences were detected in the range
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residuals. Originally the switching scheme included the

azimuth and elevation residuals but the final version uses

only the range residuals. For comparison purposes, similar

plots for case two and case three are given in Figures IV-1O

through IV-15. The estimator switching algorithm didn't

work as well in either of these cases as it did'in case one.

With 30 points per batch, the program switched from the six

state estimator to the BRV estimator at 185 seconds then im-

mediately switched to the MaRV estimator. With 10 points

per batch only one switch is made also this occurring at

192 seconds when the maneuver is detected. These comparisons

suggest the desirability of using the larger batch sizes.

Next a comparison of the accuracies of the estimated

• .parameters for the three cases was made. This was accom-

plished by comparing the differences between the estimated

parameters and their true values. In Figures IV-16 through

IV-21 the A'lfference between the estimated position and veloc-

ity states and their true values from a single sample run

of case one are plotted. In Figures IV-22, IV-23, and IV-24

the estimated values of hypersonic ballistic coefficient, CT

and Cc are plotted. Also in each of the Figures IV-16

through IV-24, plus and minus 3-a curves from tho *stimacor

covariances are plotted. In an effort to nave space, when

the case two and case three comparisons are made only the X

component of position and velocity atid the aerod)-immic para-

meters are included. These are included as VJguen. IV-29,

through IV-34. The comparif iolv% may be tiummarzI ioC af roll ()W4
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.: "?, (a) Except for position, the state estimates are

significantly degradeci as the number of points

per batch in reduced from 50 to 30 to 10.

"(b) The errors in the astimates of the aerodynamic

"parameters are most affected by the reduction in

the number of points per batch.

- - (c) In all cases, *xcept just. before estimator svitch-

ing, the true error is contained within the plus

and minus 30 curves.

Note# the apparent divargence of the estimator standard dovie-

tion on each of the Figurou IV-16 through IV-34 Is a result

of the collapsing of the batch iles once the last batch of

data is encountered. For example, say the batch else is

ipecified to be 50 points. Once the last 50 points of data

ara processed, then the batch size is reduced by the num,bog

of points the epoch is advanced until the epuch reaches the

final point;. An altarnate way to mechanize this would 1ho to

just take the estimates from the last full batch and propagate

tham to the fInil tim.a,

The results of the singla mample runs indiuatu that

the state parameters can be *etimmted exceptionally well for

batch uisea of 50 points. In the region of peak deceleration,

where the aerodynamnic p•armnneterm are estimated moot a&cujiAety,

the stundard devint.luns as dotermJnod froin tho ea•t InatOr cu-

varHaIce matrix siv wo)) witJihf a tow peruviit, of thi true

paranflt or v&) U,11, d.uout 2W. rol' balld I t,A c 'o.es t i C f i~ t gild it%

for 0i- turn arid c:lim I n gt., t vi, is , li t i I Uu vui j ry the'
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results of the single sample covariance analysis, a ten run

Monte Carlo simulation was performed for the case one runs

(50 point batch sizes). The results Of this Monte Carlo

simulation are plotted in Figures IV-35 through IV-43. In

each of these figures both the standard deviations from the

Monte Carlo simulation and from a single sample run are

plotted. Plus and minus values are plotted so as to locate

the zero line easily. The results of this Monte Carlo simula-

tion show that, in general the single sample standard devia-

tions are realistic, albeit conservative, estimates of the

errors in the estimated parameters.
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J

!:. V Summary, Conclusions and Recommendations

A very flexible algorithm for post-flight analysis of

radar tracking data collected on a ballistic missile has

been presented. It.was shown that by specifying certain

values of input parameters, the algorithm would work in

either the batch weighted least squares mode or as a sequen-

tial estimator. Two numerical examples detailing the opera-

tion of the estimator in both modes were presented. For the

sequential estimator mode, a method was devised to allow the

program to switch automatically from a free-flight model to

a BRV model and then to a MaRV model. This means that the

algorithm can be used for free-flight or for reentry analyses,

* •and the reentry may be either BRV flight or MaRV flight. A

particular state vector of parameters to determine is selec-

ted by initializing the state transition matrix to the iden-

tity matrix. For each parameter of the 9-element MaRV state

vector which is not to be included in the model, tl-9 diagonal

element of the initial state transition matrix corresponding

to that parameter is set to zero. This allows much greater

flexibility than was actually demonstrated in this report.

It means that any combination of the nine-elements may be

used as the state vector of parameters to be determined. As

an example, if the position and velocity of the RV were ac-

curately known at reentry as might be provided by a long

free-flight track, one could conceivably solve only for the

S~111



aerodynamic parameters while propagating position and velocity

according to the models given in Chapter II. This could be

done in either the batch or sequential modes. A recommenda-

tion for future research is to compare the results of such a

technique to those given in this report.

The batch weighted least squares method which was pre-

sented in Example One of Chapter IV, offers such attractive

features when compared with the sequential estimator that

one concludes that when the dynamic and measurement models

are accurately known, the batch method is preferred. The

attractive features mentioned above includet

(a) running time for the batch estimator is consider-

ably less than that required for the sequential

estimator,

(b) the estimator uncertainties are much smaller for

the batch estimator as indicated by a comparison of

Examples One and Two of Chapter IV, and

(c) programming of the batch estimator is much simplier

and therelfore less time consuming with few chances

of making errors.

These features of the batch estimator, motivate one to look

ror ways of improving models, so that the batch estimator is

applicable. This is probably not possible for the MaRV since

there is no accurate general model of maneuvering flight;

however, for BRV flight, it should be possible to come up

with some analytic model, perhaps based on wind tunnel data,

to model accurately atmospheric drag. One such model was
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suggested in Chapter II where CD was given as a function of

Mach number

+ (11-71)

In the batch mode kit X2 and k3 could be included as param-

eters to be determined in the estimation process. The drag

model given by Eq (II-71) may not be the best model in gen-

eral. A recommendation for further study is to investigate

models like Eq (11-71) for the BRV case to see under what

circumstances the batch estimator would give reasonable re-

sults. It seems that this could only be done using real

data.

A final recommendation for future study is in the area

of sequential estimation with small batch sizes. It was

mentioned earlier that for small batch sizes, a priori sta-

tistics had to be used to Xeep(Po0 +HQ'QH) non-singular and

therefore invertible. It would appear that for very large

maneuvers or where C T and Cc vary with time, small batch

sizes must be considered. When they were considered briefly

in this study it appeared that there was an inverse relation-

ship between the batch size and a weighting factor applied

to the inverse of the a priori covariance, P o More re-

search may reveal a relationship so that the weighting can

be applied automatically by the program from the batch size.

This investigation could also look at adaptively optimizing

113



"and changing the batch size as a function of time. As an

example, it may be advantageous to use smaller batch sizes in

regions of high deceleration and larger batch sizes in re-

gions where the deceleration is not as high.
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APPENDIX A The Geometrical Shape of the Earth

This appendix describes the model used for the shape

of the earth and developes the relationships nicessary in

some of the transformations involved in the trajectory esti-

4 rmation problem.

The geometrical shape of the earth is modeled as an

ellipsoid of revolution with the revolution being taken

about the minor axis which coincides with the earth's axis

of rotation. This ellipsoid of revolution, which differs

only slightly from a sphere, is used to locate positions on,

or above, the earth in a geodetic (or geographic) coordinate

system. Figure A-1 is a graphic portrayal of the reference

ellipsoid with the eccentricity greatly exaggerated showing

the parameters associated with the ellipsoid. The values

If.• given for the semi-major and semi-minor axes are from the

World Geodetic System (WGS-72) reference ellipsoid. From the

4 geometry shown in figure A-2, the relationship between geo-

detic and geocentric latitude is determined. In the local

cartesian coordinate system of Fig A-2, the equation of the

ellipse is

£ ,t (A-i)

The geodetic latitude line is perpendicular to the tangent

plane at the earth's surface as shown, so that
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FIG A-I PARAMETERS ASSOCIATED WITH REFERENCE ELLIPSOID

119



,a,

itt

I

. - SEMI-MAJOR AXIS, 6378135(M)

* b - SEMI-MINOR AXIS, 63567S0(M)

i• - GEOCENTRIC ALTIYUDE

* - LOCAL RADIUS OF THE EARTH

A - LONGITUDE

S- GEODETIC LATITUDE

S- GEOCENTRIC LATITUDE

FIG A-2 CROSS SECTION OF THE REFERENCE ELLIPSOID
USED FOR DETERMINING THE RELATIONSHIP BETWEEN
GEODETIC AND GEOCENTRIC LATITUDE
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774 dzIV (A-2)

Differentiating equation (A-i) we get

(A-3)

Substituting (A-2) in (A-3), we obtain

I

(A-4)

From the geometry of figure (A-2), we have

7;'--, f 
(A-5)

Putting (A-5) into (A-4) we obtain

•'A 7 = •ThA'4' (A-6)

which is the relationship between geodetic and geocentric

latitude which was sought.

The radius of the earth at 4 is also determined from

the geometry of Fig A-2.

I(A-7)
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Solve (A-1) for y and substitute in (A-7) to obtain

I A , = (A-8)

• Fe2
Divide through by r to obtain

t21

/ -- (A-9)

f

Rearranging (A-9) and recognizing

we obtain

IT

which gives the local radius of the earth for any geocentric

latitude where e is the eccentricity given by

(A-12)

122



Ii

APPENDIX B Partials Required in the Differential

Correction Process

Central to the working of the differential correction

process are the partial derivatives of the observations - in

this case range (R), azimuth (A), and elevation (E) - with

respect to the parameters to be estimated, in this case the

elements of the state vector at some epoch time, to. The
0

most general state vector for a MaRV is nine dimensional.

Let the state vector at the epoch time be defined as

X x 'Xxo, Y,ZO k,,, . c7,, c. (B-i)

where the nine elements are as previously defined. No o sub-

- script is required for CT and Cc since they are modeled as

constants. The partials required for the differential cor-

rection process then may be symbolized as

BR, 6R. B• R. aR. BR a aR. BR
-- 1, _. , _ i, 1_!, __i R , a i

ax 0y ByO z0 0ý0 8 B p0 ac T Ccc
Xo o o o o o T c

o 0 0 0 Yo0 0 0 T c

BE 1E. BE. BE. aE. aE. aE. aE. aE.

ax B Y az ax ayo azo ao aCT (Cc

0 0 0 0 0 0 0
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where the subscript i is used to denote the time, ti of the

S-th measurement i.e., R. = R(ti). If there are n measure-
""• 11

ments, then i = 1, 2, 3, ... n. t1 mdy or may not equal t0 •

In this developmi.ng ti is always greater than or equal t0 .

The radar range, azimuth, and elevation at ti are all

functions of the RV's position at ti.

g,; - • ×;, , z )(B-2)

X" - ,, (B-3)

(A, ,(B-4)

where Xi, Yi. and Zi are elements of the state a ti in the

ECI coordinate system.

(B-2) is determined from (B-3) by the chain rule for partial

derivatives given by the following matrix equationa AR /W.7 '.lhx . /)~X. W,/ "

Nil akX-k/ ). Y %ACC. ~Zi/

34. ly it /Aol~at(B-5)

where the matrix is a partitian of the state transition

matrix §(ti,t 0 ) to be developed on the next few pages.

Azimuth and elevation partials are calculated similar

to (B-4) using the same partition off(ti,t 0 ).
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The State Transition Matrix

The state transition matrix is defined as

a• _

Mr Va"2.1 r, -a r

The •state transition is propagated to the time of each ob-

S~servation by the matrix chain rule equation

ff 2 e6o;,,) =-6, •.Z;, ,. (B-8)

where."Tis the identity matrix and the elements of •(t 1 i~lti)

are determined from the truncated Taylor's series*

I., , I Y

These simplifying approximations are used only for
partial calculations and not for propagating the state.

1• )7 1 o 3
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(B-11)

Yi, ,.1 * at ÷ .1€s-•

yjý 0 At(B-12)

,= z,.. t �B-13)

7- .tj i ,At (B-14)

(B-15)

(B-l1)

cti, = (B-17)
C-c

where X, Y, and Z are the components of the total accelera-

tion due to gravity, drag, turn, and climb given in Ch;..-,ter

II and

At - (B-18)

Partials of Gravity Acceleration

The earth's gravity model which is used in propagating

the state vector is given in Chapter III however, a simpler

12(:,



approximation is sufficiently accuratt for calculating the

. .partials

(B-19)

VA (B.-20)

°.1

-1 (B-21)

where

/ ,, Yi z (B-22)

Then

:.(4. (B-23)

(B-24)ui#

* .
-. (13-25)

"- (B-26)

* (B-27)

~ 9 t~/z 1  ~(B-28
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! D• /- t(B-29)

a'z

IA (B-31)

All other partials of the gravity acceleration with respect

to the state are zero.

Eartials of Drac-Acceleration

The partials of acceleration due to drag are determined

from the following equations

(B-32)

(B-33)

(B-34)

Z, 4tt
(B-35)

h,$ (x°t• Y + (B--37)
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,~~ JA,%: ,_ (B-38)

The twenty-seven partials of drag acceleration with respect

to the state elements are then

+ -(B-39)

a__;
a- Y,, (B-40)
ZX; ZA, t 1I4M.

'-aX.( _ V, z (B-41)

• ax• *t,

-Val (B-42)

II

__i 4' (-46

4=2 (B-44)

xi Y.*, 2

X 0 i (B125



(B-49)

S44

~ (B-5O)

(B-51)

R-Y.0,(B-52)

|~

3a9- BX Z(B-53)

(B-54)
37,

(B-55)

all (B-58)

"I3

~ .0- (B-59)

.4.

Partials of Turn Acceleration

The components of the acceleration due to turn were

developed in Chapter II as
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71'

- V _ _ _ _ - Y _ _ _ _ ( B - 6 2 )

1 ' .. _ __ ____,___.

ri-•= [i2 -4i * kU' -x.it+ (&X• i;"ý(-3

In an effort to simplify the notation in the rather complicated

turn partials, the i subscript which denotes those parameters

which vary with time, will be dropped. Then the partials of

turn acceleration with respect to the nine state elements

1 are

S. e_.+frz~n- -(,-z7. yz-zv. B-,,

oIIA 3r'VL - (B-64)
•x7"4 7

3&•+ Y09.. (B-66)

Y +1 (B-67)[7- r ?Y2
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fa r&#y)- Aija (B-69)

7' 7-

-r 
'i- B-70)

7r 0fz ,,1- 1 3'

3 z (I 7`8 rz~x 3z]~

7- JZ IF 7- 'xz (B-72)

U Cr I? L(YIx1 -, (B-73)

7.4 (B-75)

3.AZU flo (Y i - Z Y wwv i4 - (B-76)
t LL Jsr~r

(B-77)
T e4 C1fI r

x aZYý
d .4u.7.-(x .. f19 (-8
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Ur~ (B-81)

where

ar~ ~i-~Jzn(z&)i+(j->~~D(xA) (B-82)3X ~T

if., (vi-zi). t(z4.-xLuzn-- -,xi-y;,o..ay) (B-83)

if X (B- 84)
7- r

_ ( Zt-xi•) z - ( x ýl - 110 y B-5

ar j) z -- ex'.• i- ("lY)Qx (B-86)

T, , .(.Yi -zO, - (z)L-xi•)x (-7)7. 7-

and where

4 X o(B-88)

Y V. (B-89)

V7JVo." (B-90)
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(B-91)

K (B-92)

~4frJ=~oz -- (B-93)
{3Z

Additionally

;T 7" 1(B-94)

a_ ___ (B-95)

3Crr

€.p.
37-r ,6.(B-96)

*. .. 0

" Partials of XT, YT' and ZT wrt 0 and Cc are all zero.

Partials of Climb Acceleration

The components of the acceleration due to climb from

Chapter II are

Vx UC/ U V,, ZQYx V4 i(4X (B-97)T[-]
7-cclov -rY .•~. . ' (B-98)
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5I

(B-99)

from which the partials of the climb acceleration with respect

to the state elements are

+ Ot-Y - (B-100)

+ Ad V•-zQ,),.X-y,) -) (B-101)

air ,L.,Y,•.zV- x (.xj -Z
7"8

(Z4_-X___-_______-_7___4(__g_ (B- 102)
T

*M r[-xJ...-A X 1).1 iv]X.). (B-103
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4ty -1ý-- I4 (B-104)

-t T 1(B-105)

t A )L -Xi)(B-106)

-az

* z~x±)-jy±-$~) -~iY(B.-107)
z L T T

+ (z -x4-(i z ) (B-108)
7-
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7-

irk,- X2) - LR. -zx!.-2) -,Z(YI -z''

r

T (B-112)

-t- (B-113)

Caj1O r(Y+z&-kz.-T)i Jk-ý
7-1-15

xi.(z7-x2 32 'j- ) B1 4
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+ t (Y2• -Z ' (",Y' Y4 44.), (-116)

I + T B-16

7"-(-* +S) (B- 117)

where the partials of T are as given in the previous section

and

= X "(B-120)

•z•) f•_•,, (-119)

_ (B-121)

3O1= YS3 (B-122)

Z. IL-1 23)

The partials of Xc, Y., and Zc wrt 0 and CT are all zero

and
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-- •.•-_ p•[S•(x'•Y -•,(zx.-x2)J-24

ST (B-124)

[XxL (B-125)

With the partials of acceleration with respect to state ele-

ments given in this and previous sections and equations (B-9)

through (B-18) all of the elements of C(ti+i,ti) are at hand.
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